
NPN GENERAL PURPOSE AMPLIFIER

DESCRIPTION

The device is designed for low noise, high gain, general purpose amplifier applications at collector currents from $1\mu A$ to 50mA.

1:EMITTER 2:BASE 3:COLLECTOR

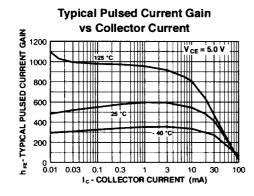
MAXIMUM RATINGS (TA=25°C, unless otherwise noted)

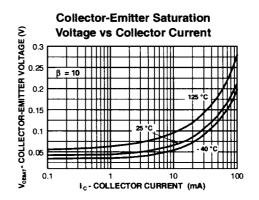
RATING	SYMBOL	3OL 2N5088 2N5089		UNIT					
Collector-Emitter voltage	VCEO	30 25		V					
Collector-Base voltage	Vсво	35 30		V					
Emitter-base voltage	VEBO	4.5		V					
Collector current-continuous	lc	100		mA					
Operating and Storage	Tj, Tstg	-55 ~ + 150		°C					
Junction Temperature Range									

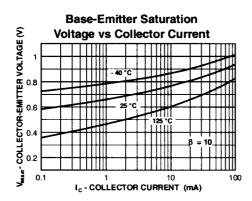
Note 1: These ratings are based on a maximum junction temperature of 150 degrees C.

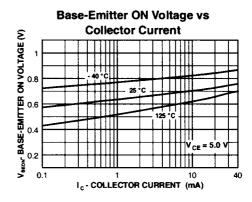
THERMAL CHARACTERISTICS (TA=25°C, unless otherwise noted)

PARAMETER	SYMBOL	MAX	UNIT
Total Device Dissipation	P_{D}	625	mW
Derate above 25°C		5	mW/°C
Thermal Resistance, Junction to Case	Rejc	83.3	°C/W
Thermal Resistance, Junction to	RеJA	200	°C/W
Ambient			

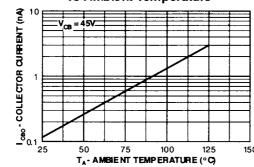

Note 2: These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

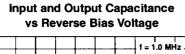

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise noted)

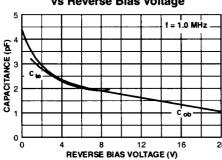

ELECTRICAL CHARACTERIS	, , , , , , , , , , , , , , , , , , , ,					
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	MAX	UNIT
OFF CHARACTERISTICS	1	T		1	1	
Collector-Emitter Breakdown Voltage	V(BR)CEO	$I_C=1.0$ mA, $I_B=0$				
(note) 2N5088				30		V
2N5089				25		V
Collector-Base Breakdown Voltage	V(BR)CBO	$I_C=100\mu A, I_E=0$				
2N5088				35		V
2N5089				30		V
Collector Cut-Off Current	Ісво					
2N5088		V_{CB} =20V, I_E =0			50	nA
2N5089		V _{CB} =15V, I _E =0			50	nA
Emitter Cutoff Current	IEBO					
		V_{EB} =3.0V, I_{C} =0			50	nA
		V_{EB} =4.5 V , I_{C} =0			100	nA
ON CHARACTERISTICS					•	
DC Current Gain	hFE	V_{CE} =5.0V, I_{C} =100 μ A	2N5088	300	900	
			2N5089	400	1200	
		V_{CE} =5.0V, I_{C} =1.0mA	2N5088	350		
			2N5089	450		
		V_{CE} =5.0V, I_{C} =10mA	2N5088	300		
		(NOTE)	2N5089	400		
Collector-Emitter Saturation Voltage	Vce(sat)	I _C =10mA, I _B =1.0mA			0.5	V
Base-Emitter On Voltage	VBE(on)	I_C =10mA, V_{CE} =5.0V			8.0	V
SMALL SIGNAL CHARACTERISTICS						
Current Gain-Bandwidth Product	f⊤	VCE=5.0mA, Ic=500μA	, f=20MHz	50		MHz
Collector-Base Capacitance	Ccb	VcB=5.0V, I _E =0, f=100kHz			4	pF
Emitter-Base Capacitance	Ceb	VEB=0.5V, Ic=0, f=100kHz			10	pF
Small-Signal Current Gain	h _{FE}	VCE=5.0V, Ic=1.0mA, f	=1.0kHz			
2N5088				350	1400	
2N5089				450	1800	
Noise Figure	NF	VCE=5.0V, Ic=100μA, F	Rs=10kΩ,			
2N5088		f=10KHz to 15.7kHz	-		3.0	dB
2N5089					2.0	dB

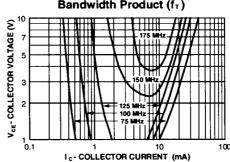

Note: Pulse Test: Pulse Width≤300µs, Duty Cycle≤2.0%.

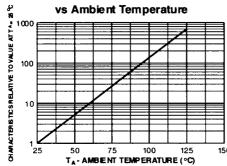
TYPICAL CHARACTERISTICS

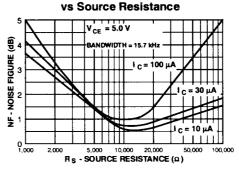


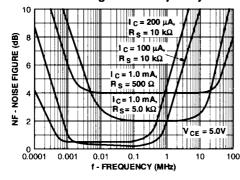


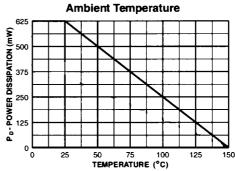


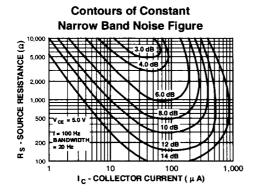

Collector-Cutoff Current vs Ambient Temperature

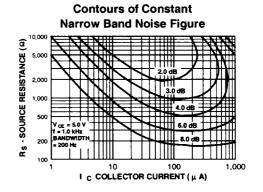


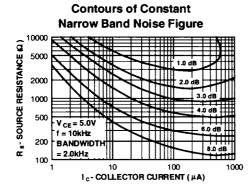

Contours of Constant Gain Bandwidth Product (f_T)

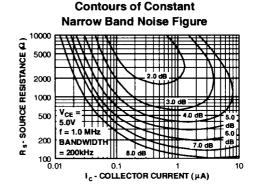

Normalized Collector-Cutoff Current

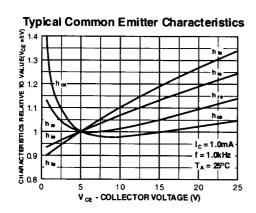

Wideband Noise Frequency

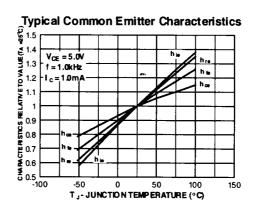


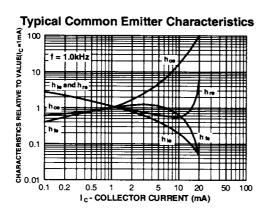

Noise Figure vs Frequency




Power Dissipation vs







UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO., LTD. 6